MARYLIE/IMPACT

A Parallel Beam Dynamics Code with Space Charge

based on the MaryLie Lie Algebraic Beam Transport Code
and the IMPACT Parallel Particle-In-Cell Code *

Robert D. Ryne
Ji Qiang

Alex J. Dragt

Accelerator and Fusion Research Division Department of Physics and Astronomy

Lawrence Berkeley National Laboratory

Berkeley, California 94720

Salman Habib

Theoretical Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Viktor Decyk

Physics Deparment
Univ. of California, Los Angeles
Los Angeles, CA 12345

University of Maryland
College Park, MD 20742

Filippo Neri

C. Thomas Mottershead
Peter Walstrom

LANSCE Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Roman Samulyak

Center for Data Intensive Computing
Brookhaven National Laboratory
Upton, New York 11973

October, 2003

*Work supported in part by U.S. Department of Energy, Office of Science, Office of High Energy Physics
and Office of Advanced Scientific Computing Research under the auspices of the Scientific Discovery through
Advanced Computing (SciDAC) program and by grant DEFG02-96ER40949.

Contents

1 Introduction to MaryLie/IMPACT
1.1 Brief Program Description
1.2 Brief Description of the ML/T Front End
1.3 Specification of Units in ML/I
1.4 Summary of New Features,
1.5 Program Availability

2 Catalog of New MaryLie/IMPACT commands
2.1 Automatic slicing of thick elements
2.2 Automatic application of a command or string of commands
2.3 Automatic tracking
2.4 Automatic concatenation
2.5 Set beam parameters
2.6 Print particle coordinates and momenta
2.7 Set parameters of Poisson solver for space charge calculation
2.8 Print 1D Beam Profile L
2.9 rayscale: scale particledatao oL
2.10 raytrace: trace rayso oo e
2.11 resetarclength: reset arc length00
2.12 symbolparser: control treatment of undefined symbols in input file

3 MaryLie/IMPACT Examples

3.1 Overview

ULk W NN

Chapter 1
Introduction to MaryLie/IMPACT

1.1 Brief Program Description

MaryLie/IMPACT (ML/I) is a hybrid code that combines the beam optics capabilities of
MaryLie with the parallel Particle-In-Cell (PIC) capabilities of IMPACT. As such, it can
be used to model beam dynamics in a wide range or rf accelerators, including linear and
circular accelerators, with or without space charge, including acceleration.

MLI/T was developed by taking certain routines (e.g. space-charge routines and rf cavity
routines) out of IMPACT and incorporating them in MaryLie. MaryLie itself was modified
to automatically slice elements and, using split-operator methods, MaryLie was then given
the ability to perform space-charge kicks in between slices. This enables ML/I to track
particles using a split-operator integration algorithm under the assumption that the single-
particle Hamiltonian is given by H = H,.,;+ H,., where H.,; is the portion of the Hamiltonian
corresponding to the external fields and where H,, is the portion corresponding to the space-
charge fields (in the mean-field approximation).

The use of ML/I is backward compatable with MaryLie. For example, all the MaryLie
beamline elements, commands, map analysis capabilities, and fitting/optimizing capabilities,
are present in ML /I. However, the ML /I front end has the ability to read lattice descriptions
in both the MaryLie style and the Standard Input Format (SIF). This is an important new
capability given the very large number of files written in the SIF style. In some cases the
input format involves an augmentation of SIF, since certain MLI capabilities — notably the
ability to treat space charge and the ability to automatically perform certain commands —
requires additional parameters to some definitions. For example, every thick element can
have an additional parameter denoting a number of slices that the element is to be cut into.

Users unfamiliar with MaryLie can download the MaryLie manual from the web pages
of Alex Dragt’s Dynamical Systems and Accelerator Theory group at the University of
Maryland, http://physics.umd.edu/dsat . Users unfamiliar with the Standard Input Format
can download documentation from the Methodical Accelerator Design (MAD) web pages at
CERN, http://www.cern.ch/mad . This ML/I manual should be thought of as an addendum
to be used in concert with the before-mentioned manuals.

1.2 Brief Description of the ML/I Front End

As already mentioned, the ML/I front end can read MaryLie-style input and it can also
read beamline descriptions in the Standard Input Format. The latter is the format used in
the MAD code from CERN, and has become a widely adopted standard. There are slight
differences in the standard between MAD version 8 and MAD version 9; ML/I attempts to
parse them both correctly without user intervention.

As stated previously, ML/I input is backward compatible with MaryLie. Therefore, all
the examples in the MaryLie manual still run under ML/I. In fact, ML/I files can mix both
MaryLie-style input and SIF-style input. A short description of MaryLie input and SIF
input follows.

In MaryLie, beamline elements are defined in a menu (under #menu in the input file) on
2 successive lines of code:

userlabel typecode
valuel value2 ... valueN

For example, in MaryLie a quadrupole magnet could be defined using the following;:

myquad quad
0.562.8211

This defines a quadrupole named myquad with a length of 0.5m, a gradient of 2.82 T /m,
and with leading and trailing fringe fields turned on. Note that all the parameters must
be present (i.e. there are no defaults), and they have to occur in the order specified in the
MaryLie manual. In the SIF format, beamline elements are defined in the following form,

userlabel: typecode, parameterl=valuel, parameter2=value2,... parameterN=valueN
For example, a quadrupole could be defined using
myquad: quadrupole, 1=0.5 k1=6.22

This describes a quadrupole named myquad having a length of 0.5 meter and a “strength”
of 6.22 m~2. Note that, in the Standard Input Format, parameters can occur in any order
on the input line, and default values apply when no value is provided. This example also
illustrates the fact that different conventions are sometimes used to specify quantities, e.g.
the gradient on axis, or the focusing strength in m=2. ML/I attempts to deal with such
situations by allowing either quantity to be specified. For example, the symbol g1 can be
used to specify the gradient in Tesla/meter:

myquad: quadrupole, 1=0.5 gl1=12.3
Other valid examples (assuming brho has been defined) are:

myquad: quadrupole, 1=0.5 gl=6.22*brho
myquad: quadrupole, 1=0.5 k1=12.3/brho

3

The preceding dealt with the description of beamline elements. Lines (which are collec-
tions of elements) are treated as follows:
In MaryLie, lines are defined under the #lines section of the input file as follows,

userlabel
iteml item2 ... itemN

In the Standard Input Format the description is,
userlabel, line=(iteml item2 ... itemN)

At present, ML/I cannot parse input with nested parentheses, userlabel, line=(iteml
item2 (item3 item4) itemb)

In regard to the overall organization of the input file, ML/I omits some of the MaryLie
requirements that the file be separated into sections of elements, lines, etc. Instead, elements,
lines, and defined constants (which were not available in MaryLie) can be freely intermixed.

1.3 Specification of Units in ML/I

The issue of units is one that has no doubt caused many accelerator designers to have hours
of frustration and lost productivity. ML/I attempts to address this by providing a flexible
and systematic treatment of units.

Essentially all particle-based beam dynamics code deal with the six-vectors of coordi-
nates and momenta (or coordinates and velocities for codes that do not use canonical vari-
ables). Let (z,ps,y,py,t,pr) denote such a six-vector in physical units. In other words, =
and y have dimensions of length, ¢ (deviation in arrival time) has the dimensions of time,
p, and p, have dimensions of momenta, and p; has dimensions of energy. Most beam dy-
namics codes (ML/I, MaryLie, MADS8, MADO9, etc.) use dimensionless variables. We will
define these in terms of three scaling constants, [,§, and w. The dimensionless variables are
(x/l,ps/6,y/l,py/0,wt, p;/wld). Note that, looking at each the products zp,, yp,, and tp;,
the scale factor relating the new product to the old product is the same in all three cases,
i.e. the scale factor is [d. As a result the transformation between the new variables and the
old variables is canonical.

The choice of the three scaling quantities [,6, and w determines the choice of dimensionless
variables (i.e. the choice of units). For example, in MaryLie, [is chosen by the user, § is
defined to be py (the reference momentum), and w is automatically selected so that wl/c = 1.
This is the natural choice for beam transport systems where there is no acceleration; we call
these “magnetostatic” or “static” units. When acceleration is present, a different (constant)
scale factor for the momentum is needed, since pg is changing. An obvious choice is to choose
0 = mc; we call this choice “dynamic” units. Note that IMPACT uses dynamic units with
the added restriction that wl/c = 1 (where w is specified by the user).

ML/T allows all three quantities [,0, and w to be selected by the user. This is accomplished
via the units command. Valid examples are,

myunits: units, type=static
myunits: units, type=dynamic
myunits: units, 1=5.0, p=2.5, w=3.6

The default scale length for ML/T is [= 1 m; the default scale angular frequency is
w = ¢/l = 299792458 rad/sec; and the default units for ML/I are magnetic units. These
values are the same as for MaryLie except that in MaryLie the user must specify the scale
length.

Note that, when using the units command, the input file should not contain the MaryLie
style #beam input (which contains both the beam parameters and the scale length); instead,
the beam command (in the MAD style) should be used along with the units command.

1.4 Summary of New Features

As already mentioned, the following three items represent key features in the ML/I code:
e space charge: ability to model beams with space charge
e acceleration: ability to model accelerating beams
e SIF compatibility: ability to read lattices in the Standard Input Format

In addition, the synthesis of a beam optics code (MaryLie) with a particle-in-cell code
(IMPACT) is enhanced by the addition of certain functionality that is useful for tracking
and other purposes. This functionality is embodied in the following “automatic” commands:

e Automatic slicing: thick elements now have an additional parameter, slices=, for
which the default value is one. This can have a number of uses. One important use
is related to the inclusion of space charge. Namely, there can be a space-charge kick
in the middle of every slice. Other uses involve autoslicing combined with automatic
application of commands. This could be used, for example, to print lattice functions
at points within thick elements.

e Automatic application of a command or string of commands: Using the autoapply
command, the user can specify a menu element or the name of a line (sequence of com-
mands) that is to be automatically applied before and after every slice. For example, if
a user wanted to tabulate the rms moments as a function of distance along the beam-
line, a user could slice the elements and then preapply or postapply the commands to
compute and print the moments.

Two more “automatic” commands available to the user are:

e Automatic tracking: Normally, ML /I concatenates maps whenever a beamline element
is encountered. However, this behavior can be changed by using the autotrack com-
mand, which causes ML/I to track particles, with or without space charge, whenever
an element is encountered.

e Automatic concatenation: The autoconcat command causes ML/I to switch from
autotrack mode to the default mode of operation where beamline elements are auto-
matically concatenated.

Finally, there are certain ML /I commands that are similar to MaryLie commands but
provide added functionality. For example, ML/I has a raytrace command that is similar
to the MaryLie rt command, but in addition provides user control of file names, control of
the subset of particles to be printed, etc. In general, command names in ML/I are longer
than names (usually 4 characters or less) used in MaryLie. Note that, because the normal
MaryLie input style requires a specific number of parameters for each menu element (i.e.
there are no defaults), it is difficult to enhance existing MaryLie commands (like rt) while
maintaining backward compatibility with MaryLie. *

1.5 Program Availability

ML/T has been installed on NERSC’s IBM /SP computer, seaborg.nersc.gov. The executable
version is at “ryne/MLI/mli.x, and example files can be found in “ryne/MLI/Examples.
Users who want full access to source and executables need to obtain permission to use both
MaryLie (from Alex Dragt, dragt@physics.umd.edu) and MaryLie/IMPACT (from Robert
Ryne, RDRyne@lbl.gov). Full access is available to DOE labs and to institutions performing
research under DOE contracts. Access by other institutions is determined on a case-by-case
basis.

*The one exception to this is that it is possible to use MaryLie style input and slice thick elements. This
is accomplished by placing the autoslice command early in the master input file. Encountering this causes
menu definitions in the MaryLie style to be parsed assuming that there is an additional (last) parameter
that is equal to the number of slices.

Chapter 2

Catalog of New MaryLie/IMPACT

commands

The computer code MaryLie contains a comprehensive collection of beamline elements and
commands, and all of these are available, unchanged, in ML/I. In addition, ML/I contains
many new commands and elements. Users will furthermore notice that some ML/I com-
mands are similar to, but not identical to, certain MaryLie commands. For example, the
“rt” command in MaryLie and the “raytrace” command in ML/I both deal with tracing
rays. The reason for this and other partial duplications is that the ML/I commands add
additional functionality. For example, the “raytrace” command adds the ability to write
results to named files, to write results on a sequence of files, and to print only a subset of the
particles in the output files. Rather than alter the original MaryLie commands and break
backward compatibility with the large body of existing MaryLie files and examples in the
MaryLie manual, the MaryLie commands have not been altered.

Below is a summary of the new ML/I commands: Parameters accepted for various ele-
ments and their default values (underlined) are shown in Table 1.

The new commands and their type code mnemonics are listed below. Also listed are the
subsections that describe them in detail.

AUTOSLICE

SLICES=# of slices, L=distance between slices, CONTROL=1ocal, global, or none

AUTOAPPLY NAME=name of menu element or line
AUTOTRACK TYPE=taylorN or symplectic/N
AUTOCONCAT
BEAM PARTICLE=proton,electron, positron,or H-,
MASS=particle mass in GeV/c*, CHARGE=particle charge in units of e,
ENERGY=total energy in GeV, EKINETIC=~kinetic energy in GeV,
PC=total momentum in GeV/c, BRHO=magnetic rigidity in Tesla/meter,
GAMMA1=~-1, GAMMA=+, BCURR=beam current in Amperes
, BFREQ=frequency of bunches in Hz,
MAXRAY=mazimum number of particles
PARTICLEDUMP MIN=, MAX=, SEQUENCELENGTH=, PRECISION=,
FILE=, CLOSE=true or false, FLUSH=true or false
POISSON NX=, NY=, NZ=, NGRIDPOINTS=fixed or variable,
BOUNDINGBOX=fixed or variable,
XMIN=, XMAX=, YMIN=, YMAX=, ZMIN=, ZMAX=,
XBOUNDARY=dirichlet, periodic, or open,
YBOUNDARY=dirichlet, periodic, or open,
ZBOUNDARY=dirichlet, periodic, or open
PROFILE1D COLUMN=, BINS=, SEQUENCELENGTH=, PRECISION=,
RWALL=, FILE=, CLOSE=true or false, FLUSH=true or false
RAYSCALE XMULT=, PXMULT=, YMULT=, PYMULT=, TMULT=, PTMULT=,
XDIV=, PXDIV=, YDIV=, PYDIV=, TDIV=, PTDIV=
RAYTRACE NORDER=, NTRACE=, NWRITE=, SEQUENCELENGTH=, PRECISION=,
MIN=, MAX=, FILE1=FILE2=, CLOSE=true or false, FLUSH=true or false
RESETARCLENGTH
SYMBOLPARSER DEFAULTZERO=true or false
UNITS TYPE=static or dynamic, L=scale length, P=scale momentum in GeV/c,
F=scale frequency in Hz, T=scale time in sec, W=scale angular frequency in rad/sec
Table 2.1: MLI command parameters and default values
Type Code Element Subsection
autoslice Automatic slicing of thick elements 2.1
autoapply Automatically apply commands at the end of each slice 2.2
autotrack Automatically track particles at the end of each slice 2.3
autoconcat Automatically concatenate maps 2.4
beam Set parameters for a reference particle and for macroparticles
defined with respect to that reference particle 2.5
particledump Print particle data to a file 2.6
poisson Set parameters of Poisson solver 2.7
profileld Print 1D profile of a phase space variable 2.8
rayscale Scale particle data 2.9
raytrace Perform a ray trace 2.10
resetarclength reset the arc length to zero 2.11
symbolparser Governs treatment of undefined symbols in input file 2.12
units Specify units (i.e. scale Rngth, scale momentum, and scale time 2.13

2.1 Automatic slicing of thick elements

Type Code: autoslice

Parameters:
1. slices: number of slices

2. [: distance between slices (m) (if slices are not specified in the parameter

list)
3. control: = none to turn off autoslicing; = local to specify slices on a per-
element basis (default); = global to specify a global number of slices or

globally defined distance between slices.

Examples:

myslicel: autoslice, control=local
myslice2: autoslice, control=global, slices=2
myslice3: autoslice, control=global, 1=0.01

The first example above specifies that autoslicing of elements will occur, and that the number
of slices is to be specified separately for each element when the elements are defined in the
input file. (The default number of slices for thick elements is one).

The second example above specifies that autoslicing of elements will occur, and that every
thick element will be cut into two slices. Note that, even if the number of slices has been
specified for the thick beamline elements in the menu definitions, they will be overridden by
this command.

The third example above specifies that autoslicing of elements will occur, and that every
thick element will be cut into slices of approximately 0.01 meters. Note that this is only
approximate; for example, an element with a length of 1.05 meter will be cut into 10 slices
(i.e. the nearest integer equal to the element length divided by the slice length). Note also
that when the element length is less than the sliced length, the number of slices is set equal
to one.

2.2 Automatic application of a command or string of commands

Type Code: autoapply

Required Parameters:
1. mame: name of a command in the menu, or name of a line that is a string

of commands in the menu

Example:

myslicel: autoapply, name=myline

The example above specifies that, after every slice, the element or line with the name “my-

line” will be applied.

10

2.3 Automatic tracking

Type Code: autotrack

Required Parameters:

1. type: The type and order of tracking. Currently the following are valid:
taylorN and symplecticN, where taylorN specifies that an Nth order taylor
expansion will be used, and symplecticN specifies that a symplectic raytrace
will be performed (based on an implicit procedure involving a generating
function) and for which the symplectic raytrace will agree with the Taylor
series approach through order N.

Example:

dotrack: autotrack, type=symplecticb

The example above specifies that, after every element or slice of an element (if autoslicing is
enabled), a raytrace will be performed. The raytrace will be symplectic to machine precision,
and it will agree with the Taylor series (or expanded Lie series) through 5th order.

11

2.4 Automatic concatenation
Type Code: autoconcat
Required Parameters: none
Example:
combinemaps: autoconcat

The example above specifies that, after every element or slice of an element (if autoslic-
ing is enabled), the map that has just been computed will be concatenated with the total

(accumulated) transfer map.
This is the default mode of operation for MaryLie and for MaryLie/IMPACT.

12

2.5 Set beam parameters

Type Code: beam

Parameters:
1. particle: proton, electron, positron, H-
mass: particle mass in GeV/c?
charge: particle charge in units of e
energy: total energy in GeV
ekinetic: kinetic energy in GeV
pc: momentum in GeV/c
brho: magnetic rigidity in Tesla/meter

gammal: v —1

e B A

gamma: vy

—_
e

bcurr: beam current in Amperes.

—_
—_

. bfreq: frequency of bunches in Hz.

—_
o

mazray: maximum number of macroparticles to be created

This command is used to specify the parameters of a reference particle. This
information is needed to compute maps (which are determined with respect to
some reference trajectory). Also, a distribution of particles can be created that
is specified in terms of deviations from the reference values.

Note that the the user is responsible for specifying the parameters sensibly.
For example, the user can specify the particle and energy, or particle and mo-
mentum, or brho and gammal, etc. The user should not specify the parameters
in a way that is over- or under-determined.

Note that bfreq=f and bcurr=I determine the total charge per bunch, Q,
through the relation Q = I/f. This is important when modeling beams with
space charge.

Example:

setbeam: beam, particle=proton, ekinetic=0.800.

The example above specifies a proton beam with a kinetic energy of 0.800 GeV.

13

2.6 Print particle coordinates and momenta

Type Code: particledump

Parameters:

1. min:
max:
sequencelength.:
Precision:

file:

close:
flush:

N A

Examples:

printrays: particledump, precision=b, file=outrays, sequencelength=100
printltob: particledump, file=history.data, min=1, max=5, close=false

Whenever the first example is invoked, it will cause all the particle data to be printed on
a new file called “outraysNNN”, where NNN=001,002,003,... etc. The data will be printed
with 5 digits of precision.

Whenever the second example is invoked, it will cause particles 1 through 5 to be printed
on a file called “history.data” ;note that, if this command is automatically applied after every
element or slice of an element, it will could be used to make ray plots of selected particles
(in this case, the first 5 particles).

14

2.7 Set parameters of Poisson solver for space charge calculation

Type Code: poisson

Parameters:
1. nz,ny,nz: number of grid points in the x, y, and z directions

2. boundingbox: = wariable (default) to specify that the code should auto-
matically determine the grid size at every step so that the grid just en-
closed the particles; = fized to specify a fixed grid defined by xmin,xmax,
ymin,ymax,zmin,zmax

3. ngridpoints: = fized to keep nx,ny,nz fixed; = variable to specify that the
code should adjust nx,ny,nz at each time step in such a way that the aspect
ratio does not deviate significantly from 1.

4. xmin,xmax: = minimum and maximum grid values in x

5. ymin,ymazr: = minimum and maximum grid values in y

6. zmin,zmar: = minimum and maximum grid values in z

7. zboundary: = open, dirichlet, or periodic boundary in the x-direction (de-
fault is OPEN, currently the only available option)

8. yboundary: = open, dirichlet, or periodic boundary in the y-direction (de-
fault is OPEN, currently the only available option)

9. zboundary: = open, dirichlet, or periodic boundary in the z-direction (de-
fault is OPEN, currently the only available option)

Example:

mypoisson: poisson, nx=32, ny=32, nz=32

The above specifies that the Poisson solver will use a 323 grid. Also, since everything else
is based on the default values, the following will be in effect: the solver will assume open
boundary conditions; the number of grid points will be fixed; and the code will automatically
adjust the size of the bounding box (i.e. the box that surrounds the particles when open
boundary conditions are in use), making the box bigger or smaller as the beam evolves so
the the box is large enough to contain all the particles.

15

2.8 Print 1D Beam Profile

Type Code: profileld

Parameters:
1. column: column number of 1D profile
bins: number of bins
rwall: wall radius (meters)
sequencelength: maximum number of files to be printed in a sequence of files
precision: decimal precision of data printed in files
file: file name
close: true (false) to close (not close) the current file

flush: true (false) to flush (not flush) the current file

e A

Example:

myname: XXXXXXX, Yyyy=...

The example above specifies...

16

2.9 rayscale: scale particle data

Type Code: rayscale

Required Parameters:

1.

AR AN R A

xmult, zdiv: Scale factor by which to multiply or divide x-data
prxmult, prdiv: Scale factor by which to multiply or divide px-data
ymult, ydiv: Scale factor by which to multiply or divide y-data
pymult, pydiv: Scale factor by which to multiply or divide py-data
tmult, tdiv: Scale factor by which to multiply or divide t-data
ptmult, ptdiv: Scale factor by which to multiply or divide pt-data

Example:

myname: convert_from_cm, xdiv=100., ydiv=100.

The example scales x-data and y-data by dividing the values by 100. This could be used,
for example, if the data that were read in happened to be produced by another code that
specified x-data and y-data in centimeters, and the user wanted to convert the data to meters.

17

2.10 raytrace: trace rays

Type Code: raytrace

Required Parameters:

1.

—_
e

S B I A

norder: order of ray trace

ntrace: to perform ntrace ray traces

nwrite: to write the data every nrwite’th time

sequencelength: maximum number of files to be printed in a sequence of files
precision: decimal precision of data printed in files

min, maz: to print the particles in the range (min, max)

file1: name of input file

file2: name of output file, or base name if a sequence of files is to be printed
close: true (false) to close (not close) the output file

flush: true (false) to flush (not flush) the output file

Example:

mytrace: raytrace, norder=...

The example above specifies...

18

2.11 resetarclength: reset arc length

Type Code: resetarclength
Required Parameters: none

Example:

arclengthO: resetarclength

The example above specifies...

19

2.12 symbolparser: control treatment of undefined symbols in in-
put file

Type Code: symbolparser

Required Parameters:

1. defaultzero: “true” to assign undefined symbols the value zero; “false” (the
default) to halt execution if undefined symbols are encountered in the input
file.

Example:

undefined_is_zero: symbolparser, defaultzero=true

The example above specifies...

20

Chapter 3
MaryLie/IMPACT Examples

3.1 Overview

The MaryLie manual has many examples showing the use of MaryLie. The following con-
tains additional examples that exhibit new features that are found in MaryLie/IMPACT.
This includes, for example, beamlines with rf cavities that accelerate the beam, auto-slicing
beamline elements, and auto-application of commands. Nearly all of the examples include
the effects of space charge.

3.2 FODO Channel with RF Cavities 7?7
3.3 KV Beam in a FODO Channel 7?7
3.4 Virtual Wire Scanners in a FODO Channel 7?
3.5 Anistropic 2D Beam in a Constant Focusing Channel 77?7
3.6 Thermal 3D Equilibrium in a Constant Focusing Channel 7?7
3.7 Bi-Thermal 3D Equilibrium in a Constatnt Focusing Channel ??

21

(Example chapter of this manual is in preparation.)

22

